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Abstract Previously, we reported that insulin-stimulated glucose uptake (ISGU) can be inhibited by endothelin
(ET-1). However, the mechanism by which ET-1 impairs ISGU in adipocytes remains unclear. This study investigated
the effects of ET-1 on insulin action in rat adipocytes in order to elucidate the molecular mechanism of action of ET-1
on ISGU. The results show that ISGU was increased fivefold after 3-h treatment with 1 nM insulin. Treatment with 100
nM ET-1 had no effect on basal glucose uptake. However, ET-1 inhibited approximately 25% of ISGU and 20% of
insulin binding after 3-h treatment in the presence of 1 nM insulin. Expression of the b-subunit of the insulin receptor
(IRb) and the insulin receptor substrate-1 (IRS-1) in adipocytes was not significantly affected by 1 nM insulin or by 100
nM ET-1, even after 3-h treatment. However, expressions of IRb and IRS-1 were dramatically decreased in a dose- and
time-dependent manner when adipocytes were treated with both insulin and ET-1. Approximately 50% of IRb and 65%
of IRS-1 expression levels were suppressed when adipocytes were simultaneously treated with both 1 nM insulin and
100 nM ET-1 for 3 h. These results suggest that the inhibitory effect of ET-1 on ISGU may be mediated via the insulin
receptor and suppression of IRb/IRS-1 expression. J. Cell. Biochem. 78:231–240, 2000. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Insulin resistance occurs in a wide variety of
pathological states and is a central component
of type 2 diabetes mellitus [Kahn, 1995]. The
frequent clustering of insulin resistance, hy-
pertension, central obesity, hypertriglyceride-
mia, and accelerated atherosclerosis has led to

the definition of a common metabolic condition
often referred to as syndrome X [Ferrannini et
al., 1987; Zavaroni et al., 1989]. Over the past
decade, many of the proteins involved in insu-
lin action have been defined at a molecular
level [White and Kahn, 1994]. The b subunit of
insulin receptor (IRb) is a protein tyrosine ki-
nase that, when activated by insulin binding,
undergoes rapid autophosphorylation and
phosphorylates intracellular protein sub-
strates, including Shc, and related high molec-
ular weight insulin receptor substrate-1
(IRS-1) [White and Kahn, 1994]. Following ty-
rosine phosphorylation, IRS-1 acts as a docking
protein for several Src homology 2 domain-
containing molecules, including phosphatidyl-
inositol 3-kinase (PI 3-kinase) and Grb2 [White
and Kahn, 1994; Folli et al., 1992; Yamauchi et
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al., 1995]. The interaction between the IRS-1
and PI 3-kinase occurs through the p85 regu-
latory subunit of the enzyme and results in an
increase in catalytic activity of the p110 sub-
unit [Folli et al., 1992; Kelly and Ruderman,
1993]. PI 3-kinase is essential for many
insulin-sensitive metabolic processes including
stimulation of glucose transport, and stimula-
tion of glycogen and protein synthesis [Chung
et al., 1994; Cheatham et al., 1994; Franke et
al., 1995; Shepherd et al., 1995; Mendez et al.,
1996].

Insulin plays a key role in the regulation of
metabolism in many mammalian cells, princi-
pally liver cells, muscle cells, and adipocytes
[White and Kahn, 1994; Kahn, 1994]. At the
cellular level, insulin produces a wide variety
of anabolic effects, including stimulation of glu-
cose and amino acid transport, modulation of
rate-limiting enzymatic activities in glycogen,
lipid and protein syntheses, induction of gene
expression, and promotion of DNA synthesis
[Rosen, 1987]. Through these events, insulin
acts as a central regulator of glucose, lipid, and
protein metabolism in liver and other periph-
eral tissues.

Endothelin-1 (ET-1) was originally identified
as a potent vasoconstrictor peptide, which is
produced by vascular endothelial cells, and
acts on smooth muscle cells leading to hyper-
tensive effects [Yanagisawa et al., 1988], but
has subsequently been shown to be a versatile
agent that is associated with diverse cell ac-
tions in various tissues and organs. In adipo-
cytes, ET-1 has been shown to inhibit insulin-
stimulated glucose uptake (ISGU) [Chou et al.,
1994] through the ETA receptor [Lee et al.,
1998]. However, the mechanism of the inhibi-
tory effect of ET-1 on ISGU in adipocytes re-
mains unknown. In this report, we present ev-
idence that suggests that ET-1 may generate
its inhibitory effect on ISGU in adipocytes via
the suppression of IRb and IRS-1 expression.

MATERIALS AND METHODS

Reagents

ET-1 was purchased from The Peptide Insti-
tute (Osaka, Japan). Collagenase was obtained
from Worthington Biochemical (Freehold, NJ).
Phenylmethylsulfonyl fluoride (PMSF), trans-
epoxysuccinyl-L-leucylamido-(4-guanidino)-
butane (E-64), EGTA, EDTA, Tween 20, acetic
acid, bromophenyl blue, glycine, methanol,

b-mercapto-ethanol, and potassium dihydrogen
phosphate (KH2PO4) were from Merck (Darm-
stadt, Germany). Protease inhibitor cocktail
and 3-[cyclohexylamino]-1-propane-sulfonic
acid (CAPS) were purchased from Calbiochem
(La Jolla, CA). Sodium orthovanadate, porcine
insulin, sodium chloride (NaCl), Triton X-100,
bovine serum albumin-free fatty acid, magne-
sium sulfate (MgSO4), potassium chloride
(KCl), calcium chloride dihydrate (CaCl2 z
2H2O), sodium bicarbonate (NaHCO3), pyruvic
acid, Tris, N,N,N9,N9-tetramethylethylene-
diamine (TEMED), ponceau-S, and all other
reagents and chemicals were purchased from
Sigma Chemical (St. Louis, MO). SDS, acryl-
amide, bisacrylamide, and ammonium persul-
fate were from Pharmacia (Uppsala, Sweden).
Polyvinylidene fluoride (PVDF) membrane
(Immobilon-P) was from Millipore (Bedford,
MA). Anti-IRb, anti-rat carboxyl-terminal
IRS-1, and anti-rat p85 subunit of PI 3-kinase
antibodies were from Upstate Biotechnology
(Lake Placid, NY). Protein assay reagent and
goat anti-rabbit IgG conjugated with peroxi-
dase were from Bio-Rad (Hercules, CA). (3-
[125I]iodotyrosyl) insulin (1,800 Ci/mmol), and
2-deoxy-D-[1-3H]-glucose ([3H] 2-DG) (11 Ci/
mmol) were from Amersham (Little Chalfont,
England). Enhanced chemiluminescence (ECL)
Western blotting detection reagents were pur-
chased from Amersham Life Science ( Bucking-
hamshire, UK). X-ray film was from Fuji (To-
kyo, Japan).

Animals

Male Sprague-Dawley rats weighing 250 to
300 g were obtained from the Animal Center of
National Yang-Ming University and kept in an
air-conditioned room (temperature maintained
from 21 to 23°C) with a 12-h light cycle (6 AM
to 6 PM). They were fed grain regular chow and
allowed continuous access to food and water.
The base diet was purchased from PMI Feeds
(St. Louis, MO). The chow contained 60%
grain-derived carbohydrate, 23.5% protein,
4.5% lipid, 6% cellulose, and 6% mineral and
other. All procedures were performed in accor-
dance with the Taiwan Government Guide for
the Care and Use of Laboratory Animals, and
the protocol was approved by the Animal Wel-
fare Committee of Taipei Veterans General
Hospital.
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Experimental Protocols

After a week of habituation, rats were killed
by decapitation, and the epididymal fat pads
were collected for experiments. Each experi-
ment was preceded by a 16-h fast. Insulin bind-
ing and ISGU to isolated adipocytes from rats
were measured after treated with 1 nM insulin,
100 nM ET-1, and 1 nM insulin plus 100 nM
ET-1 at 37°C for 3 h. In another experiment,
isolated rat adipocytes were treated with insu-
lin and (or) ET-1 at the indicated concentra-
tions and time points at a temperature of 37°C
for 3 h. For crude cell extract preparation, the
reaction was terminated by adding ice-cold
Krebs-Ringer Bicarbonate (KRB) buffer (118
mM NaCl, 5 mM KCl, 1.2 mM MgSO4, 1.2 mM
KH2PO4, 1.3 mM CaCl2 z 2H2O, 25 mM
NaHCO3, pH 7.4) and suspended in 200 ml lysis
buffer (10 mM Tris, 1 mM EGTA, 1 mM EDTA,
150 mM NaCl, 1% Triton X-100, 0.5 mM
PMSF, 1 mM E-64, 1 mM leupeptin, 1 mg/ml
aprotinin, and 0.2 M sodium orthovanadate)
after insulin and (or) ET-1 treatment at 37°C
for 3 h. Protein concentration of the cell extract
was determined and cell extract was subjected
to 8% SDS-PAGE for immunoblot analysis.

Preparation of Isolated Adipocytes

Male Sprague-Dawley rats weighing 250–
300 g were killed by decapitation, and the ep-
ididymal fat pads were collected. The fat pad
blood vessels were removed with forceps and
the pads were quickly chopped into pieces with
scissors in a temperature controlled environ-
ment at 37°C. Isolated adipocytes were ob-
tained using the method of Rodbell [Rodbell,
1966] with some minor modifications [Huang
et al., 1997] by shaking (100 rpm) finely minced
tissue at 37°C for 1 h in KRB buffer containing
1 mM pyruvate, 1% bovine serum albumin, and
0.1% collagenase. The cell suspension was then
filtered through nylon mesh (400 mm), centri-
fuged at 100 rpm for 1 min, and washed twice
with the same buffer solution without collage-
nase at 37°C. Finally, the supernatant layer of
isolated adipocytes was harvested, diluted one-
fold with the same collagenase-free buffer so-
lution, and used in experiments. The cell num-
ber was counted after an aliquot of diluted cell
suspension was fixed in a collidine buffer con-
taining 2% osmium tetroxide [Di Girolamo et
al., 1971].

Measurement of Glucose Uptake Into
Adipocytes

Glucose uptake into isolated adipocytes was
determined by measuring the transport of [3H]
2-DG into the cells, as described by Garvey et
al. [1987] with minor modifications. ISGU to
isolated adipocytes from rats was measured
after treatment with 1 nM insulin, 100 nM
ET-1, and 1 nM insulin plus 100 nM ET-1 at
37°C for 3 h. Aliquots (450 ml) of isolated adi-
pocytes with a predetermined cell number were
mixed with 50 ml [3H] 2-DG to a final concen-
tration of 50 mM and treatment was continued
for 3 min. Adding 200 ml unlabeled 2-DG in
KRB solution (500 mM) terminated the treat-
ment. After thorough mixing, 300 ml of the
mixture was transferred to a centrifuge tube
containing 200 ml silicone oil and the cellular
layer was separated by centrifugation at 1,000
rpm for 1 min. The radioactivity retained by
the adipocytes was measured by a liquid scin-
tillation counter.

Measurement of Insulin Binding to Adipocytes

Insulin binding to isolated adipocytes was
determined according to a previously described
procedure [Pedersen et al., 1981]. A fixed
amount of [125I]insulin (to a final concentration
of 0.25 nM, ; 53105 cpm/tube) and an increas-
ing concentration of unlabeled insulin (5 pM to
500 nM) were added to aliquots of fat cells
(104/400 ml). The cells were incubated in an
oxygen-rich chamber (5% CO2 : 95% O2) at
37°C with gentle rotation at 40 rpm for 30 min.
Then, a 300 ml cell suspension was transferred
to a fresh centrifuge tube containing 200 ml
silicone oil, and the mixture was centrifuged at
1,000 rpm for 1 min. The cellular layer was
transferred to a counting vial for measurement
of radioactivity. The nonspecific-binding tube
contained 1 mM unlabeled insulin.

Crude Cell Extract Preparation

Isolated rat adipocytes treated with insulin
and (or) ET-1 for the indicated concentrations
and time points at 37°C were obtained for
crude cell extract preparation. For crude cell
extract preparation, isolated adipocytes were
washed twice with ice-cold KRB solution and
suspended in 200 ml lysis buffer after insulin
and (or) ET-1 treatment and homogenized on
ice with a Sonic Dismembrator (model 150,
Fisher) for 3 3 10 s at 40% power output. Cell
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lysates were then centrifuged at 12,000 rpm for
20 min at 4°C and the supernatants were used
as the cell extracts. Protein concentration of
the cell extract was determined using Bio-Rad
protein assay reagent [Bradford, 1976].

Immunoblot Analysis

The cell extracts were lysed with 1% SDS
and heated to 100°C for 10 min. For immuno-
blot analysis of IRb and P85 subunit of PI
3-kinase from cell extracts, the extracts (;75
mg protein) were subjected to 8% SDS-PAGE,
electrotransferred to PVDF membrane and
then immunoblotted with anti-IRb and anti-
P85 subunit of PI 3-kinase antibodies and goat
anti-rabbit IgG antibody conjugated with per-
oxidase. For immunoblot analysis of IRS-1, the
cell extracts (;100 mg protein) were subjected
to 8% SDS-PAGE, electrotransferred to PVDF
membrane and then immunoblotted with anti-
IRS-1 antibody and goat anti-rabbit IgG anti-
body conjugated with peroxidase. To reduce
nonspecific antibody binding, the PVDF mem-
branes were blocked with 5% nonfat milk for
2 h at 25°C in a Tris-Tween Buffer Saline
(TTBS) buffer (20 mM Tris, 137 mM NaCl,
0.1% Tween 20, pH 7.4). The membranes were
then incubated with anti-protein antibody in
TTBS plus 3% nonfat milk at 25°C for 3 h. The
membranes were subjected to three 5-min
washes in TTBS. Immunoblots were developed
with the ECL Western blotting detection re-
agents system using peroxidase as substrate at
25°C for chemiluminescence detection [Gillespie
and Hudspeth, 1991]. The luminescent light
emission was recorded on X-ray film and quan-
tified by computing densitometer (Molecular
Dynamics, Sunnyvale, CA).

Statistical Analysis

All values are expressed as the mean 6
SEM. The significance of differences between
the two groups was assessed by the Student’s
t-test when multiple measurements were ap-
plied. A value of P less than 0.05 was consid-
ered statistically significant.

RESULTS

Figure 1 shows that ISGU was increased
fivefold by 1 nM insulin, whereas ISGU was
not affected by 100 nM ET-1 after 3 h treat-
ment with isolated rat adipocytes (Fig. 1). In
addition, the inhibition of approximately 25%

of ISGU (Fig. 1) and 20% of insulin binding
(Fig. 2) were observed in the presence of both 1
nM insulin and 100 nM ET-1. Table 1 summa-
rizes the results for competitive insulin binding
in experiments. Scatchard plotting revealed
the high- and low-affinity binding sites. For
high-affinity binding sites, there were no dif-
ferences in the dissociation constant (Kd) and
maximal binding (Bmax) with pretreatment in
the presence of 1 nM insulin and 1 nM insulin
plus 100 nM ET-1 at 37°C for 3 h. For low-
affinity binding sites, the Kd and Bmax for pre-
treatment with both 1 nM insulin and 100 nM
ET-1 increased significantly (P , 0.05) com-
pared to pretreatment with 1 nM insulin, indi-
cating a shifted prevalence of binding sites to-
ward a reduced affinity. The expression of both
IRb (Fig. 3, left) and IRS-1 (Fig. 4, left) were
not significantly affected even when adipocytes
were treated with 1 nM insulin for 3 h. Simi-
larly, the expression of IRb (Fig. 3, middle) and
IRS-1 (Fig. 4, middle) were also not affected
even when adipocytes were treated with 100
nM ET-1 for 3 h. However, when adipocytes
were simultaneously treated with both 1 nM
insulin and 100 nM ET-1, the expressions of
both IRb (Fig. 3, right) and IRS-1 (Fig. 4, right)
were dramatically suppressed in a time- and
dose-dependent manner. Approximately 50% of
IRb (Fig. 3, right) and 65% of IRS-1 (Fig. 4,
right) expression levels were suppressed when
adipocytes were simultaneously treated with

Fig. 1. Effect of insulin and ET-1 on glucose uptake in adipo-
cytes. Isolated rat adipocytes treated in the absence (C) or
presence (I) of 1 nM insulin, 100 nM ET-1 (E), both 1 nM insulin
and 100 nM ET-1 (I1E) on a rotating platform (100 rpm) at 37°C
for 3 h. Then, [3H]2-DG was add and the treatments were
continued for 3 min. Cells were separated and glucose uptake
was determined as described in Materials and Methods. Data
are expressed as the mean6SEM of four independent experi-
ments. *P ,0.05 (I vs. I1E).
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both 1 nM insulin and 100 nM ET-1 for 3 h.
However, the expression of PI 3-kinase was not
significantly affected by treatment with both
insulin and ET-1 under this condition (Fig. 5).
These results suggest that ET-1 may block in-
sulin binding and expression of both IRb and
IRS-1 resulting in the inhibition of ISGU in
adipocytes.

DISCUSSION

Previously, we reported that ET-1 inhibits
ISGU in isolated rat adipocytes [Chou et al.,
1994], and that exogenous ET-1 can induce
insulin resistance in conscious rats [Juan et al.,
1996]. However, the biochemical mechanism
by which ET-1 impairs ISGU in adipocytes is
unknown. In this study, we examined the com-
bined effects of both insulin and ET-1 on insu-
lin action in isolated rat adipocytes. The re-
sults show that when 1 nM insulin was
combined with 100 nM ET-1 to treat isolated
rat adipocytes at 37°C for 3 h, the expression of

both IRb (Fig. 3, right) and IRS-1 (Fig. 4, right)
were dramatically suppressed to ;50% and
;35% of the control levels, respectively. Since
combination of insulin and ET-1 can specifi-
cally inhibit ISGU but not basal glucose uptake
[Chou et al., 1994], the results of this study
support the notion that insulin and ET-1 may
both function to block the expression of both
IRb and IRS-1 and thereby to inhibit ISGU in
rat adipocytes. However, these findings are in
contrast to the results of an in vitro study in
which ET-1 was shown to stimulate glucose
production in the 3T3-L1 adipocytes [Wu-Wong
et al., 1999]. Whether the combination of high
dose of insulin and ET-1 is essential for the
generation of insulin resistance in vivo [Juan
et al., 1999] deserves further investigation.

There is resistance at the receptor level due
to either decreased receptor number [Olefsky
and Kolterman, 1981; Traxinger and Marshall,
1990] or kinase activity [Haring and
Obermaier-Kusser, 1989; Thies et al., 1990],

Fig. 2. Effect of insulin and ET-1
on insulin binding in adipocytes.
Insulin binding to isolated adipo-
cytes treated in the absence (open
circles) or presence (closed circles)
of 1 nM insulin, 100 nM ET-1
(open triangles), both 1 nM insulin
and 100 nM ET-1 (closed triangles)
on a rotating platform (100 rpm) at
37°C for 3 h. Cells were separated
and insulin binding was deter-
mined as described in Materials
and Methods. Values are averages
from duplicate tubes expressed a
percentage of specific [125I]insulin
binding. Data are expressed as the
mean6SEM of four independent
experiments. *P , 0.05 (open cir-
cle vs. closed triangles)

TABLE I. Scatchard Analysis of Insulin Binding to Adipocytes Pretreated in the Absence or
Presence of 1 nM Insulin, 100 nM ET-1, Both 1 nM Insulin and 100 nM ET-1 at 37°C for 3 h. Data

Are Expressed as Mean 6 SEM. **P < 0.01 (1 nM Insulin 1 100 nM ET-1 vs. 1 nM Insulin)

High-affinity binding site Low-affinity binding site

Bmax

(fmol/2 3 105 cells) Kd (nmol)
Bmax

(fmol/2 3 105 cells) Kd (nmol)

control 12.5 6 3.2 0.38 6 0.10 230.3 6 74.2 25.5 6 9.2
1 nM insulin 7.3 6 2.4 0.21 6 0.05 146.9 6 40.2 14.4 6 4.3
100 nM ET-1 33.2 6 10.1 1.25 6 0.45 932.7 6 200.5 36.6 6 12
1 nM insulin 1 100 nM ET-1 4.8 6 1.2 0.08 6 0.02 **2132.8 6 300.8 **141.7 6 40.4
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resistance in the post-receptor signaling path-
way [Traxinger and Marshall, 1989; Kozka et
al., 1991], and resistance due to a reduced pool
of glucose transporters [Berger et al., 1989]. In
view of previous studies, the insulin resistance
of chronically insulin-treated cells is due nei-
ther to a decreased receptor number nor to
decreased availability of transporters [Reynet
et al., 1990; Desbois et al., 1992]. A down-
regulation of IRS-1 expression can be gener-
ated by chronic treatment of 3T3-L1 adipocytes
with insulin [Rice et al., 1993]. However, the
down-regulation is accomplished almost en-
tirely through an increase in the rate of degra-
dation of IRS-1, with little change in steady
state IRS-1 mRNA [Rice et al., 1993]. In this
study, insulin binding was not affected by pre-
treatment of adipocytes in the presence of 1 nM
insulin or 100 nM ET-1 for 3 h (Fig. 2). The
expression of both IRb (Fig. 3) and IRS-1 (Fig.
4) was not significantly affected even when adi-
pocytes were treated with 1 nM insulin or 100
nM ET-1 for 3 h.

Other researchers have suggested that both
ET- and insulin-enhanced glucose uptake in
human myoblasts and in differentiated myo-
tubes of L6 skeletal muscle cells occur mainly
through the same protein kinase C-dependent
pathway, but that the effects are not additive
[Yang et al., 1994]. This suggests that ET-1
may compete with insulin for muscle uptake of
glucose and thereby interfere with normal in-
sulin activity and cause insulin resistance
[Juan et al., 1996]. Interestingly, a negative
correlation between total glucose uptake and
circulating ET-1 levels was recently demon-
strated [Ferri et al., 1995] in patients with type
2 diabetes mellitus using the euglycemic hy-
perinsulinemic clamp technique. More impor-
tantly, it has been demonstrated that exoge-
nous ET-1 induced insulin resistance in
healthy humans was caused by reduction of
insulin-dependent glucose uptake in skeletal
muscle without decreasing skeletal muscle
blood flow [Ottosson-Seeberger et al., 1997],
which suggests that ET-1-induced reduction of

Fig. 3. Effect of insulin, ET-1, insulin plus ET-1 on IRb in
adipocytes. A–C: Isolated rat adipocytes treated with insulin
(A1,A2), ET-1 (B1,B2), both 1 nM insulin and ET-1 (C1,C2) for
the indicated concentrations at 37°C for 3 h were subjected to
8% SDS-PAGE, transferred to PVDF membrane, and probed
with IRb antibody, followed by computer densitometric quan-
tification of the immunoblot as described in Materials and

Methods. D–F: Isolated adipocytes treated with 1 nM insulin
(D1,D2), 100 nM ET-1 (E1,E2), both 1 nM insulin and 100 nM
ET-1 (F1,F2) for the indicated time points at 37°C were sub-
jected to immunoblot analysis with IRb antibody as described
in the legend (A–C). Data are expressed as the mean6SEM of
four independent experiments. *P , 0.05, **P , 0.01.
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whole-body glucose uptake is more likely to be
due to a decreased insulin-mediated glucose
uptake in peripheral tissues. However, the
quantitative contribution of adipose tissue to
whole-body insulin-stimulated glucose disposal
was low in their study, and cannot explain the
marked decrease in insulin sensitivity ob-
served [Ottosson-Seeberger et al., 1997]. These
findings are in contrast with the results of an
in vitro study in which ET-1 was shown to
stimulate glucose production in isolated per-
fused rat liver [Roden et al., 1992]. In some
cases, the interaction between ET-1 and insu-
lin leads to insulin resistance and a decreased
insulin-stimulated intracellular signaling. In
cardiomyocytes isolated from adult rat hearts,
the effect of insulin on glucose uptake can be
partially blocked by modifying G-proteins with
cholera toxin. However, the presence of iso-
prenaline alone, like insulin, increases glucose
transport [Eckel et al., 1990]. Several recent
reports indicate that type 2 diabetes mellitus,

arterial hypertension, and lipid disorders, as
well as visceral obesity are coronary risk fac-
tors that might belong to a syndrome that is
caused by decreased insulin sensitivity with
compensatory hyperinsulinemia [Baillie et al.,
1998]. The potential clinical importance of our
finding that ET-1 induces insulin resistance
depends largely on whether the ET-1 levels
found are comparable with those observed in
pathological conditions associated with insulin
resistance. However, the mechanism by which
ET-1 inhibits ISGU remains unclear.

In this study, we measured insulin binding
when adipocytes were simultaneously treated
with both 1 nM insulin and 100 nM ET-1 at
37°C for 3 h. Furthermore, insulin binding was
decreased to ;80% when adipocytes were si-
multaneously treated with both insulin and
ET-1 at 37°C for 3 h (Fig. 2). The expressions of
both IRb (Fig. 3, right) and IRS-1 (Fig. 4, right)
were dramatically suppressed in a time- and
dose-dependent manner. We found that com-

Fig. 4. Effect of insulin, ET-1, insulin plus ET-1 on IRS-1 in
adipocytes. A–C: Isolated rat adipocytes treated with insulin
(A1,A2), ET-1 (B1,B2), both 1 nM insulin and ET-1 (C1,C2) for
the indicated concentrations at 37°C for 3 h were subjected to
immunoblot analysis with IRS-1 antibody as described in the
legend to Figure 3. D–F: Isolated adipocytes treated with 1 nM

insulin (D1,D2), 100 nM ET-1 (E1,E2), both 1 nM insulin and
100 nM ET-1 (F1,F2) for the indicated time points at 37°C were
subjected to immunoblot analysis with IRS-1 antibody. Data are
expressed as the mean6SEM of four independent experiments.
*P , 0.05, **P , 0.01.
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bined treatment with insulin and ET-1 dra-
matically suppressed both IRb and IRS-1 ex-
pression. However, the expression of PI
3-kinase, one of the established pathways in
insulin action [Backer et al., 1992] was not
significantly affected under this condition (Fig.
5). Our results suggest that the combined effect
of insulin and ET-1 on IRb/IRS-1 and on the
subsequent ISGU may be unrelated to PI
3-kinase. This notion is further supported by
similar findings in 3T3-L1 adipocytes [Wu-
Wong et al., 1999]. Recently, ET-1-mediated
inhibition of insulin activated PI 3-kinase has
been shown to be a rapid, reversible, and reg-
ulated event, since the inhibitory effect
reached the maximal level when the vascular
smooth muscle cells were pretreated for 2 min,
started to decline after 10 min, and was com-
pletely reversed in 60 min [Jiang et al., 1999].
However, in the present study, simultaneous
treatment of adipocytes with both insulin and
ET-1 had a long-term effect. ET-1, an activator
of protein kinase C [Clerk et al., 1994], inhib-
ited the insulin signal pathway via the
mitogen-activated protein kinase pathway and
the serine phosphorylation of Ser-612 in IRS-1
[Li et al., 1999]. Furthermore, ET-1 inhibited

by 50% the insulin-stimulated association of
IRS-1 with PI 3-kinase in the 3T3-L1 preadi-
pocytes [Li et al., 1999]. Although PI 3-kinase
may be essential for many insulin actions in-
cluding stimulation of glucose uptake and gly-
cogen and protein synthesis [Chung et al.,
1994; Cheatham et al., 1994; Franke et al.,
1995; Shepherd et al., 1995; Mendez et al.,
1996], the results of this study suggest that the
control mechanism of ISGU by IRb, IRS-1, and
PI 3-kinase may be differentially regulated in
insulin action pathways. The findings of this
study suggest that the inhibitory effect of ET-1
on ISGU may be mediated via the insulin re-
ceptor and suppression of IRb/IRS-1 expres-
sion.
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